
Joins via Polynomial Multiplication

Scott Kovach
https://cutfree.net

January 9, 2024

[draft]

1 Introduction

This post is on the subject of how to see operations on relations (such as natural
join, projection, filtering) and operations on (sparse) numeric arrays as instances
of “ordinary” addition and multiplication.

Let’s talk about single-variable polynomials over some (semi)ring K. We

can write a polynomial like so: f =
∑deg f

i=0 fix
i, where fi ∈ K.

There are usually two ways of describing polynomial multiplication. First,
there’s the explicit formula for coefficients:

(f · g)i =
∑

0≤j≤i

fjgi−j .

Second, there’s the appeal to linearity: the key fact is that xi · xj = xi+j ,
and everything else follows from “multiplying things out”. Multiplication by
fix

i is linear, that is, fix
i(a+ b) = fix

ia+ fix
ib, so

fg =

(
deg f∑
i=0

fix
i

)deg g∑
j=0

gjx
j

 =
∑
i,j

(fix
i)(gjx

j) =
∑
i,j

figjx
i+j .

The first formula is more direct and explicit, but maybe the second is more
intuitive. The core thing is just the rule for how powers of x multiply, and
everything else is a consequence of the ring axioms.

Often relational joins are explained in terms of operations on sets, since re-
lations are naturally thought of as sets of tuples anyway. The result is usually
an explicit formula for the join of some relations. There are many perspec-
tives (Jaffray, 2023), however, and in this note we’d like to call attention to
the last entry of the linked post, “join is a ring product”. This approach relies
on the appeal to linearity to give a very straightforward definition of the join
operation using polynomial arithmetic. Everything boils down to a rule that is
just slightly different from xixj = xi+j .

1

https://cutfree.net
https://en.wikipedia.org/wiki/Semiring
https://en.wikipedia.org/wiki/Relational_algebra#Joins_and_join-like_operators
https://justinjaffray.com/joins-13-ways/
https://justinjaffray.com/joins-13-ways/

We’ll go beyond the post to see how this technique applies to tensors, graphs,
and more. Finally, we’ll talk about an implementation technique for actually ef-
ficient calculations, indexed streams, and how they naturally arise from thinking
about polynomial multiplication.

2 Join from a semiring

Starting with a certain polynomial semiring, we’ll construct a quotient so that
multiplication in the resulting semiring directly encodes natural join. If you’re
unfamiliar with this jargon, there are two ideas to keep in mind:

• A polynomial is a sum of products of some pre-selected formal variables.
“Formal” means that these variables don’t intrinsically mean anything;
they are merely opaque entities that can be added and multiplied. Given
a coefficient semiring K and a set of variables X, there is a corresponding
polynomial semiring K[X].

• A quotient imposes certain equations; for instance, quotienting by x2 = y
means that anytime x2 appears in a polynomial, it can be replaced by y
(or vice-versa). We will impose some equations so that every polynomial
has a normal form with certain desirable properties.

2.1 The Variables

The first ingredient is a schema. Usually a schema tells us something about
the tables, columns, and value types you find in a database. For us, it only
specifies the possible columns, a set A, which we call attributes. For simplicity,
we assume there is one value type U (for universe); you can imagine it as the
disjoint union of whatever other types you might want.

We start with the simplest building block: (attribute, value) pairs. The idea
is to make up a formal variable for every possible pair (a, v) ∈ A × U . We
use a mnemonic notation for these variables: for all (a, v) ∈ A × U , we write
“[a 7→ v]” to denote a new formal variable. We choose this notation because a
pair is supposed to represent a being mapped to v. For the set of all of them,
we’ll use the notation

{A → U} := {[a 7→ v] | a ∈ A, v ∈ U}.

We assume these variables commute with each other. The first polynomial
semiring of interest to us is

Bool[{A → U}].

Here, Bool := {0, 1}, with addition given by logical-or (i.e. 1 + 1 = 1) and
multiplication logical-and.

This semiring is all you need to represent relations:

• A tuple is a product of variables (one for each column).

• A relation is a sum of tuples.

2

Example: Say we have A = {a, b} and U = {1, 2, 3}. Then The tuple {a :=
1, b := 3} would be represented by the product [a 7→ 1][b 7→ 3]. Note that the
tuple components are labeled by name, not by their order, so it is fine that
the variables commute, and the “order” in which the variables are multiplied
doesn’t matter.

To represent a collection of tuples, just add them together! A relation is a
sum of products of these variables, or in other words, a polynomial.

2.2 The Equations

What if we multiply [a 7→ 1] by [a 7→ 2]? What does [c 7→ 3]2 encode? Although
it’s clear that any relation can be represented as a polynomial in Bool[{A → U}],
there are other things that do not correspond to normal relations living inside
this set, like 1+ [c 7→ 3]2+[a 7→ 1][a 7→ 2]. Moreover, we claimed that we would
recover join as multiplication, but multiplication will generate terms like those
above that don’t represent tuples.

The solution we take is to impose two equations on our semiring:

• (I1) For all a, v: [a 7→ v]2 = [a 7→ v].

• (I2) For all a, v1 ̸= v2: [a 7→ v1][a 7→ v2] = 0.

It’s easy to see that this guarantees that any f ∈ K[{A → U}] is equivalent
to one where

• No exponent greater than one appears, and

• no two variables with the same attribute appear in any monomial,

which is sufficient to ensure that every monomial represents a tuple. We still
entertain objects like [a 7→ 2] + [b 7→ 3] which do not correspond to a relation
whose tuples have the same attribute set.

For the rest of this note, when discussing polynomials, we assume they be-
long to K[UA] := K[{A → U}]/(I1, I2), the semiring with variables {A → U}
modulo the identities we just defined.

The power of this definition is that (equi)join is just product :

Fact If r1, r2 ∈ K[Ua] represent the relations R1, R2, then r1r2 represents
R1 ▷◁ R2.

Example: Suppose we have these relations storing a subset of wikipedia:

3

pages = [id 7→ 1][title 7→ “Headless men”][url 7→ link]

+ [id 7→ 2][title 7→ “Yōkai”][url 7→ link]

main-image = [id 7→ 1]


image 7→



+ [id 7→ 2]


image 7→



Note that both relations share the id attribute. The conflicting value rule
means that when we multiply these together, only tuples with matching id values
contribute to the product:

(pages) · (main-image)

= ([id 7→ 1][title 7→ “Headless men”][url 7→ link] + [id 7→ 2][title 7→ “Yōkai”][url 7→ link]) ·[id 7→ 1]

image 7→

+ [id 7→ 2]

image 7→




= [id 7→ 1][title 7→ “Headless men”][url 7→ link]

image 7→



+ [id 7→ 2][title 7→ “Yōkai”][url 7→ link]

image 7→



Example: Suppose we have vector spaces U, V,W with bases {ui}, {vj}, {wk}
and two matrices A : U → V and B : V → W written according to these bases.

4

https://en.wikipedia.org/wiki/Headless_men
https://en.wikipedia.org/wiki/Y%C5%8Dkai
https://en.wikipedia.org/wiki/Headless_men
https://en.wikipedia.org/wiki/Y%C5%8Dkai
https://en.wikipedia.org/wiki/Headless_men
https://en.wikipedia.org/wiki/Y%C5%8Dkai

We encode the matrices like so:

A =
∑
i,j

Ai,j [U 7→ ui][V 7→ vj],

B =
∑
j,k

Bj,k[V 7→ vj][W 7→ wk].

Note that for the sake of encoding a matrix as a polynomial, the attribute names
U, V,W are unimportant; what is important is that we use a consistent encoding
for both A and B. Now, what is AB?

AB =

∑
i,j

Ai,j [U 7→ ui][V 7→ vj]

∑
j,k

Bj,k[V 7→ vj][W 7→ wk]


=

∑
i,j1,j2,k

(Ai,j1 [U 7→ ui][V 7→ vj1])(Bj2,k[V 7→ vj2][W 7→ wk])

=
∑
i,j,k

Ai,jBj,k[U 7→ ui][V 7→ vj][W 7→ wk]

We used the second equation to cancel terms where j1 ̸= j2 and the first
equation to simplify those terms that remain. What you see is quite similar to
matrix multiplication, and all you need to do to close the gap is substitute 1 for
all the [V 7→ −] variables (see Section 4).

3 Choice of Coefficients

Relational vs. Bag/Multiset Semantics There are at least two useful
ways of representing relations in practice: relational and multiset semantics.
The difference with the latter is that tuples may be stored more than once.
Although the relational model is what Codd intended, the bag semantics might
increase the efficiency of certain operations, since they don’t need to check for
duplicates when constructing their output. If we want bag semantics polynomi-
als, we can simply choose a different coefficient semiring: instead of Bool, take
N. Other choices can be used to encode various other things:

• As in the matrix example above, we can choose R and assign a real value
to each tuple; then relations may encode tensors.

• We might assign probabilities and then regard a polynomial as a proba-
bilistic database, recording the likelihood of a given tuple.

• The tropical semiring uses R as its carrier set, min as its addition op-
eration, and addition (of real numbers) as its product. With a universe
consisting of vertices, polynomials over two attributes encode weighted
graphs.

5

4 General Relational Algebra

Join is not the only operation of relational algebra. Here are some others, along
with their encoding as polynomial operations:

union (merge together relations)

implementation: addition.

projection (eliminate an attribute from a table; denoted πaf)

implementation: to project attribute a, substitute 1 for each [a 7→ v]
variable. This is polynomial evaluation.

selection (Also known as filter ; denoted σP (f) by Codd) We want to filter out
tuples that don’t satisfy a predicate P : σP (f) := {t ∈ f | P (t)}.
implementation: suppose p(t) = 1 if t satisfies P and p(t) = 0 otherwise.
Then encode the extension of P as a power series: P :=

∑
t p(t)t. Now

filtering is simply multiplication: σP (f) = P · f , which is a polynomial.

rename (trivial but important; replace an attribute with another: fa7→a′)

implementation: substitute [a′ 7→ v] for [a 7→ v], for all v.

Example: Suppose we want to talk about a matrix A : V → V and
compute A2. This is awkward but possible using our approach: we need
attributes V ′, V ′′, then represent A using K[V, V ′] (to distinguish the do-
main from the codomain), and then the matrix product is

(πV ′A(AV 7→V ′,V ′ 7→V ′′))V ′′ 7→V ′ ∈ K[V, V ′].

5 Computations

Suppose we have a number of such polynomials stored in memory. Can we
efficiently calculate product, union, projection, selection, in practice? In the
remainder of the note, we’ll focus on the case of product.

We know that two polynomials f, g can be multiplied by considering each
pair of their monomials, multiplying them, and adding those up:

for t1 in f:

for t2 in g:

output += t1 * t2

However, a lot of cancellation occurs because of our reduction rules, so ideally
we would avoid considering the large set of intermediate results that arise from
considering all pairs.

The first bit of structure we’re going to use is the attribute set. Say A =
{a1, a2, . . . , ak−1, ak}. We can equivalently write

K[UA] ≃ K[Ua1][Ua2] · · · [Uak−1][Uak].

6

The point is to think of an element f ∈ K[UA] as a polynomial over just
the variables {{ak} → U} with coefficients that are also polynomials living in
K[Ua1][Ua2] · · · [Uak−1]. If we can efficiently multiply elements of R and also
polynomials over one attribute, then by induction we can multiply polynomials
over several attributes.

5.1 Multiplying polynomials with one attribute

This is simple: because of equation I2, the multiplication algorithm is equivalent
to computing an intersection. For each v ∈ U in the intersection, multiply the
corresponding coefficients.

Example: Say we have f = [a 7→ 1] + 2[a 7→ 2] + [a 7→ 4] + [a 7→ 8] and
g = 4[a 7→ 1] + 3[a 7→ 2] + [a 7→ 3] + [a 7→ 4]. Then fg = 4[a 7→ 1] + 6[a 7→
2] + [a 7→ 4].

Suppose we have a set data structure that supports constant time membership
and iteration in time O(|S|). Merging several sets S1, S2, . . . , Sk can be done in
time O(k ·mini |Si|). The same is possible for maps which associate a coefficient
to each key.

5.2 The general case

Example: Now suppose we have

f = ([b 7→ 6] + [b 7→ 7])[a 7→ 1] + ([b 7→ 2] + [b 7→ 3] + [b 7→ 4])[a 7→ 2]

and
g = ([b 7→ 3] + [b 7→ 5])[a 7→ 2] + [b 7→ 2][a 7→ 3]

Notice that for [a 7→ 2], f[a7→2]g[a 7→2] = [b 7→ 3], but for other x ∈ {{a} → U},
fxgx = 0. It follows that

fg = [b 7→ 3][a 7→ 2].

This generalizes in a straightforward way to any number of polynomials over
arbitrary subsets of A. One way to compute this operation efficiently is to store
the input polynomials using tries (with one level per attribute, according to the
attribute order), then generate a nest of loops, with one per attribute. Each
loop performs the required merge, and for each value in its intersection the next
loop is run. The innermost loop multiplies K-values and stores them in an
output data structure.

For more details, please see our paper, Kovach et al. (2023). We give a
more complete characterization of state machines that suffice to compute these
products efficiently and describe our compiler that implements the model for
relations and sparse tensor arithmetic.

7

References

Scott Kovach, Praneeth Kolichala, Tiancheng Gu, and Fredrik Kjolstad. 2023.
Indexed Streams: A Formal Intermediate Representation for Fused Contrac-
tion Programs (PLDI 2023). Association for Computing Machinery. https:

//doi.org/10.1145/3591268

8

https://doi.org/10.1145/3591268
https://doi.org/10.1145/3591268

	Introduction
	Join from a semiring
	The Variables
	The Equations

	Choice of Coefficients
	General Relational Algebra
	Computations
	Multiplying polynomials with one attribute
	The general case

