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1 Introduction

In this note we’ll give some background on natural join queries and a self-
contained proof of the “AGM” output size bound (Atserias et al., 2013).

We start with background on relations and join queries and state the goal:
to bound the worst-case query size given size bounds on the input relations. At
a high level, the proof is short and simple (see here), but it carefully relies on
some facts about entropy. We then prove these facts. We’ll loosely follow the
structured proof style described by Lamport (2012) 1.

2 Background

This note is about a basic type of relational join query. The problem is to
determine the set of tuples that satisfy a set of constraints, where each constraint
is expressed as a relation. Formally, we have a universe set U and a set of column
attributes A. When α ⊆ A, Uα denotes the set of tuples of shape α. 2 That is,
a tuple assigns a value of U to each value in α. A relation R of shape α is a
subset of Uα. We use σ(R) as notation for the shape of R.

Example: Suppose we maintain a database of wildlife observations. We might
use the attributes

A = {user-id, username, profile-photo, date, image-data, location}.

A users table would have shape {user-id, username, profile-photo}, while the
primary table, observations, might have shape {user-id, date, image-data, location}.

1using his package pf2 available at http://lamport.azurewebsites.net/latex/latex.

html
2Often a type is assigned to each attribute, and tuples must assign an appropriate value

to each. We work with one universe set U just to simplify some definitions. We think of U as
the disjoint union of whatever types are necessary, and the main point of this note does not
depend on the nature of U at all.
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Example: An example tuple in Rusers:user-id 7→ 11, username 7→ "Emmy", profile-photo 7→


Since t ∈ Uβ is a function, we can always restrict it to a smaller domain

α ⊆ β to obtain a tuple over α, which we denote t|α. For instance if t ∈ Robs

then t|{date} would be a tuple containing only the “date” field of t.

Definition [natural join query] A problem instance consists of a sequence
of finite relations, Q = [R1, R2, . . . , Rk] (not necessarily of the same shape). Let
A :=

⋃
R∈Q σ(R) (we write R ∈ Q if R = Ri for some i). The schema of Q

is the function σ(Q) : {1, 2, . . . , k} → 2A given by σ(Q)(i) := σ(Ri).
3 The

solution to Q is the relation JQK ⊆ UA defined by

JQK := {t ∈ UA | ∀R ∈ Q, t|σ(R) ∈ R}.

The purpose of this note is to prove an asymptotic upper bound on the size
of this set given in terms of the sizes of each input relation. We can stipulate
a family of problem instances by first fixing the schema σ : {1, 2, . . . , k} → 2A.
We can then characterize the size of a problem instance using a vector b of sizes,
where |Q| = b means |Ri| = bi. We are looking for the worst case size,

max
σ(Q)=σ,|Q|=b

|JQK|,

which is the largest possible output size over all input relations with fixed schema
and fixed size. We give a couple of examples for intuition before stating and
proving the bound in Section 4.

Example: Suppose R1 ⊆ U{a,b} and R2 ⊆ U{b,c} and |R1| = |R2| = n. How
big could the join of these relations be? First of all, we are interested in a certain
subset of tuples from U{a,b,c}, and each tuple consists of a value for each of a, b,
and c. There are n tuples in R1, so at most n distinct values can appear for
a (and similarly for b and c). Thus n3 is an upper bound. We can clearly do
better: any tuple much correspond with one tuple of R1 and one tuple of R2,
and there are at most n · n ways of choosing one from each, so n2 is a better
upper bound. Moreover, if we choose R1 := {(1, 1), (2, 1), . . . , (n, 1)} and R2 :=
{(1, 1), (1, 2), . . . , (1, n)} then the join consists of n2 tuples {(x, 1, y) | x, y ∈ [n]},
so this upper bound is tight (we can conflate a tuple in U{a,b,c} with a tuple
(x, y, z) ∈ U3 as long as we are careful to keep track of which value is which, for
instance by ordering our attributes).

3The schema is equivalently a subset of A×Q, and some other sources refer to this as the
query hypergraph.
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Example: Suppose that in addition to R1, R2, we have R3 ⊆ U{a,c} and
|R3| = n. We have not added any new attributes; the new relation can only
further constrain the size of the output. Thus n2 is still an upper bound.
However, this is not the best upper bound (check to see why the example values
for R1 and R2 that were just given can no longer generate an output of size n2).
For reasons we’ll see below, in fact n3/2 is an upper bound for this query, which
is known as the triangle query.

Example: Suppose we have the same query, but we generalize the bounds:
|R1| = b1, |R2| = b2, |R3| = b3. Then (b1b2b3)

1/2 is an upper bound, but in some
cases (for instance if b1b2 ≪ b3) this isn’t the best upper bound.

We’ll see that the theorem we prove handles all such problems, but the
answer it gives is less simple than other worst-case bounds you may have seen.
The reason is that it includes an additional parameter that lets us choose “how
much” of a given relation to include in the bound.

3 Entropy Definitions

We use capitals X,Y, Z for discrete random variables and x, y, z for values of the
corresponding type. With some abuse of notation we write [x] for the probability
P (X = x), [x;Y ] for the variable Y conditioned on X = x, and [x; y] for the
conditional probability P ([x;Y ] = y) = P (Y = y | X = x) = [xy]/[x]. Let
supp(X) denote the support of a random variable.

H(X) is the entropy of X:

H(X) :=
∑

x∈supp(X)

[x] log[x]−1

H(X;Y ) is the conditional entropy of Y given X, which is defined to be the
expected entropy of [x;Y ] over X:

H(X;Y ) :=
∑

x∈supp(X)

[x]
∑

y∈supp([x;Y ])

[x; y] log[x; y]−1

4 AGM Bound

We reproduce the proof based on entropy from the appendix of Ngo et al. (2014).
In Section 5, we prove the basic properties of entropy we use in the proof.

The key idea is pick a distribution over JQK, then bound the entropy of this
distribution in terms of the entropy of various marginalizations corresponding
to the shape of each R ∈ Q. Finally, we relate these entropy estimates to the
size of each relation and the output.

Let R≥0 := {x ∈ R | x ≥ 0}. To state the bound, we need to introduce an
extra “weight” parameter, λ : Q → R≥0. Each relation has a shape σ(R), which
is the set of attributes over which it is defined. We number the attributes, so
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A ≃ {1, 2, . . . , n}, and when i ∈ σ(R) we say that R covers i. The requirement
on λ we impose is that each attribute is “sufficiently covered”; the sum of the
weights of all relations covering i must be at least one:

1 ≤
∑

R : i∈σ(R)

λR (1)

Theorem [AGM bound] Given a query problem Q and λ : Q → R≥0 satis-
fying condition (1),

|Q| ≤
∏
R∈Q

|R|λR .

Let X be the uniform random variable with support JQK ⊆ UA. Then X|σ(R) =
{Xi}i∈σ(R) is the random variable formed by projecting X onto σ(R).
⟨1⟩1. For any α ⊆ A, H(X|α) =

∑
i∈α H({Xj}j∈α,j<i;Xi)

Proof: Section 5.2.
⟨1⟩2. For any Z, if α ⊆ β, then H(X|β ;Z) ≤ H(X|α;Z)

⟨2⟩1. For arbitrary variables, H(X,Y ;Z) ≤ H(X;Z)
Proof: Section 5.3.

Proof: Repeated application of ⟨2⟩1.
⟨1⟩3. For all R ∈ Q, H(X|σ(R)) ≤ log |R|
⟨2⟩1. For any random variable Z, H(Z) ≤ log |supp(Z)|
Proof: Section 5.1

⟨2⟩2. supp(X|σ(R)) ⊆ R.
Proof: By definition of the natural join problem, and the assumption that
supp(X) = JQK.

Proof: By ⟨2⟩1 and ⟨2⟩2
⟨1⟩4. log |JQK| ≤

∑
R λR log |R|
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Proof : log |JQK| = H(X) Section 5.1

=
∑
i

H({Xj}j<i;Xi) ⟨1⟩1

≤
∑
i

 ∑
R : i∈σ(R)

λR

H({Xj}j<i;Xi) assumption

=
∑
R

λR

∑
i∈σ(R)

H({Xj}j<i;Xi) re-order sums

≤
∑
R

λR

∑
i∈σ(R)

H({Xj}j∈σ(R),j<i;Xi) ⟨1⟩2

=
∑
R

λRH(X|σ(R)) ⟨1⟩1

≤
∑
R

λR log |R| ⟨1⟩3

Proof: By exponentiating both sides of ⟨1⟩4.

5 Entropy Lemmas

For this section we only take one fact for granted; log is concave, meaning that
it satisfies Jensen’s inequality:

∑
i

[i] log yi ≤ log

(∑
i

[i]yi

)

for any random variable I with support {1, 2, . . . , n} and {yi ∈ R≥0 | 1 ≤ i ≤ n}.

5.1 Maximal Entropy

Theorem: If X is a random variable taking values in a finite set of size n,
then H(X) ≤ log n, with equality if X follows the uniform distribution.

Proof: using Jensen’s inequality:

H(X) :=
∑
x

[x] log[x]−1 ≤ log

(∑
x

[x]/[x]

)
= log n.

And when uniform, ∑
x

[x] log[x]−1 =
∑
x

1

n
log n = log n.
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5.2 Chain Rule

Theorem [Chain Rule]

H(X;Y ) = H(XY )−H(X)

H(X;Y ) :=
∑
x

[x]
∑
y

[x; y] log[x; y]−1

=
∑
xy

[xy] log([x]/[xy])

=
∑
xy

[xy] log[xy]−1 −
∑
xy

[xy] log[x]−1

=
∑
xy

[xy] log[xy]−1 −
∑
x

[x] log[x]−1

= H(XY )−H(X).

Theorem [Chain Rule*]

H(X1, X2, . . . , Xk) =
∑

1≤i≤k

H(X1, . . . , Xi−1;Xi)

⟨1⟩1. H({}) = 0
Proof: The empty variable is deterministic, so its entropy is zero.

Proof:∑
1≤i≤k

H(X1, . . . , Xi−1;Xi) =
∑

1≤i≤k

(H(X1, . . . , Xi)−H(X1, . . . , Xi−1)) chain rule

= H(X1, X2, . . . , Xk)−H({}) sum telescopes

= H(X1, X2, . . . , Xk) ⟨1⟩1

5.3 Conditioning

This section proves a basic fact about entropy: the conditional entropy H(X;Y )
can only increase if X is marginalized. This makes intuitive sense, and the proof
contains nothing more than Jensen’s inequality and some tricky manipulation
of conditional probabilities. This proof follows Galvin (2014).

Theorem:
H(X,Y ;Z) ≤ H(X;Z)

Proof: The inequality step below is Jensen’s inequality, which is applicable
since

∑
y[xz; y] = 1. The equality steps are applications of the definition of
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conditional probability.

H(X,Y ;Z) :=
∑
xy

[xy]
∑
z

[xy; z] log[xy; z]−1

=
∑
xyz

[xyz] log[xy; z]−1

=
∑
xz

[xz]
∑
y

[xz; y] log[xy; z]−1

≤
∑
xz

[xz] log

(∑
y

[xz; y]/[xy; z]

)
log is concave

=
∑
xz

[xz] log

(∑
y

[xy]/[xz]

)
=
∑
xz

[xz] log([x]/[xz]) (marginalize y)

=
∑
x

[x]
∑
z

[x; z] log[x; z]−1

=: H(X;Z).

References

Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size bounds and query
plans for relational joins. SIAM J. Comput. 42, 4 (2013), 1737–1767.

David Galvin. 2014. Three tutorial lectures on entropy and counting.
arXiv:1406.7872 [math.CO]

Leslie Lamport. 2012. How to write a 21 st century proof. Journal of fixed point
theory and applications 11 (2012), 43–63.
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